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Abstract

We present discrete physically-based methods for gen-
erating polygonal approximations of implicit surfaces.

These methods not only generate a combinatorial man-

ifold approximating the surface, but also produce a
structure that is well suited to numerical simulations

in physically-based modeling and animation systems.
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1 Introduction

Consider a di�erentiable function F : Rn ! R, for
which 0 is a regular value. This means that the gra-

dient vector
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is non-zero at all points p in the inverse image M =
F�1(0). In this case, the set M is a di�erentiable man-

ifold of dimension n � 1 that we shall simply call an

implicit manifold (Spivak, 1965).

Recently the use of implicit surfaces has attracted
the attention of researchers in geometric modeling. Im-

plicit surfaces are suitable for applying visualization

techniques based on ray-tracing (see (Hanharan, 1983)
(Barr, 1986)), but some di�culties arise when we try

to sample or structure points on them in order to gain

more information about their topology and geometry

(Figueiredo, 1991). One of the important issues in this

sampling and structuring problem is the computation of

polygonal approximations to the surface. Polygonal ap-

proximations enable us to use the fast, special purpose

processors of graphic workstations in order to display

implicit surface models.

1.1 Polygonization of Implicit Surfaces

To capture the geometry of an implicit manifold, we

must sample and structure points on it. In this paper,

our objective is to structure the points in order to obtain
a combinatorial manifold eM that is close to M in some

suitable topology. The manifold eM is called a polygonal

approximation of the surface M .

Polygonal approximations to implicit manifolds were

�rst described in the classic paper (Allgower & Schmidt,

1985). The method proposed by Allgower and Schmidt
consists of the following steps:

1. Compute a triangulation of the ambient space;

2. Replace the function F by its simplicial approxi-

mation eF relative to this triangulation;

3. Re�ne the triangulation so that eF is close to F .

The combinatorial manifold is then obtained as the

inverse image eF�1(0) of the simplicial approxima-
tion.

The Freudenthal triangulation is the simplest trian-

gulation in Rn: the space is subdivided into cubes and
the triangulation is obtained by subdividing each n-

cube into n! simplices. Figure 1 shows a two dimen-

sional example. For more details the reader should con-

sult (Allgower & Georg, 1990).

Several variations of Allgower's method exist in the
graphics literature (Wyvill et al., 1986), (Loreson &

Cline, 1987), (Bloomental, 1988), (Velho, 1989), (Hall

& Warren, 1990). The correct computation of polygo-
nal approximations to implicit manifolds depends on a

priori estimates of the variation of the surface geometry

(this is the re�nement step (3) in the above algorithm).
For this reason, some of the aforementioned works in-

volve the computation of adaptive polygonizations in

order to get better approximations.
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Figure 1: Freudenthal triangulation

1.2 Physically-based Modeling

Modeling is the most labor intensive part in the process

of computer graphics. Modeling the motion of objects
is often very di�cult when the main goal is to generate

realistic motion. The best solution to this problem is

to model the physical habitat of the object: the mo-
tion will be a consequence of the interaction between

the object and its environment, according to the laws

of physics. A discussion of this physically-based model-
ing approach is found in several papers in the graphics

literature (Barr et al., 1987), (Terzopoulos & Fleischer,

1988).

1.3 Physically-based Polygonization of

Implicit Objects

In this paper we use physically-based methods to com-

pute polygonal approximations. These methods yield

naturally adapted polygonizations. They also make it
possible to construct a model such that the resulting

polygonization has a natural physical structure associ-

ated with it which can be exploited for physically-based
simulations.

Physically based methods in the study of implicit

surfaces is a very recent research topic. In (Velho &
Gomes, 1991) a spring-mass model is used to construct

an adapted shell that approximates the geometry of the

manifold. In (Velho & Gomes, 1991a), it is shown how
this spring-mass shell can be used to do dynamical sim-

ulations with implicit models. In (Figueiredo, 1991),

physically-based particle systems are used to sample

points on an implicit manifold; algorithms for struc-

turing such samples provide a powerful technique for

modeling with implicit surfaces.

The physically-based approach to constructing piece-

wise linear approximation of implicit manifolds is re-

lated to the variational methods used to generate adap-
tive numerical grids for the numerical solution of partial

di�erential equations (Thompson et al., 1985). How-

ever, there are two main di�erences:

� To our knowledge, the adaptive methods in the nu-

merical grid generation literature are developed for

structured grids. The problem of polygonization of

implicit surfaces is a non-structured one.

� In numerical grid generation, the physics of the as-
sociated problems may drive the adaptation of the

grid. In our case, the primary interest is in the ge-
ometry and topology of the underlying grid space.

Our methods can certainly be used to generate adap-

tive numerical grids for problems where the physical do-

main can be de�ned implicitly. In fact, polygonization
methods for implicit surfaces seem to be a very attrac-

tive technique for generating non-structured numerical

grids.

In this paper, we are interested in polygonizations
that are regular or \quasi-regular" triangulations. A

quasi-regular triangulation is a 2-dimensional simplicial

complex which is constituted by elements that are al-
most equilateral and equiangular. This type of poly-

gonization is desirable in a number of applications to

modeling and numerical simulation.

1.4 Overview

Section 2 describes the two discrete physical systems

that we use to construct the polygonal approximation.
Section 3 describes the polygonization algorithm us-

ing physically-based particle systems. Section 4 de-

scribes the polygonization algorithm using a spring-
mass physical model. Section 5 gives examples and

makes some comparisons between the two approaches

described. Section 6 closes with a brief description of
our current work in this area.

2 Discrete Physical Systems

A discrete physical model abstracts matter as an ensem-
ble of particles related to each other by forces. Several

physical phenomena may be naturally modeled using

discrete physical systems (Greenspan, 1973). In a dis-
crete physical system the particles interact under the ac-

tion of internal and external forces. The associated mo-

tion equations are easily written as a classical F = ma

equation of Newtonian dynamics. Simple numerical in-

tegration methods, such as Euler's method generally

produce good results.

In this work, we use two discrete physical models: a
particle system and a spring-mass system.

2.1 Dynamic Particle Systems

A particle system is a �nite set of particles which have
an initial position in space and whose behavior in time

is governed by algorithmic rules. Particle systems were

introduced in graphics by Reeves as an algorithmic tech-

nique for modeling �re explosions (Reeves, 1983). In a

physical particle system, the particles have masses and

the Newtonian mechanics dictates their dynamical be-

havior. The motion of a particle depends on its mass,

position and velocity, and on the forces acting on it, ei-

ther by other particles or by the ambient medium. A
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physical particle system is a discrete physical model as
de�ned above.

Physical particle systems have been used to simulate
natural phenomena such as waterfalls (Sims, 1990) and

�reworks (Weil, 1987). These systems in general re-

quire a signi�cant amount of computational e�ort be-
cause of the number of particles involved. In Section 3

we shall use a simple physical particle system to com-
pute a polygonal approximation to an implicit manifold.

More recently, (Szeliski & Tonnesen, 1991) have applied

physical particle systems to surface modeling.

2.2 Spring-Mass Systems

A spring-mass system is a physical particle system

structured by connecting pairs of particles with springs.

The springs impose internal forces that depend on the
distance between these particles and govern the global

behavior of the system. The resulting structure can be

represented as a graph, where each particle is a node,
and two nodes are connected when there is a spring

joining the corresponding particles. Conversely, each

graph linearly embedded in the space is naturally asso-
ciated to a spring-mass system | a duality that will be

exploited in Section 4 for triangulations.

Spring-mass systems are suitable to create physically-

based models of deformable objects for dynamical sim-

ulation (Haumann, 1987), (Terzopoulos et al., 1989).
In the recent paper (Terzopoulos & Vasilescu, 1991), a

spring-mass system is applied to adaptive image sam-

pling and surface reconstruction. This approach has
several connections with our method.

3 Polygonization using Dynamic

Particle Systems

In this section, we describe an algorithm for computing

a polygonal approximation of an implicit manifold using
a physically-based particle system (Figueiredo, 1991).

3.1 Sampling using Dynamic Particle

Systems

To properly sample a geometric object we must com-
pute enough points on it so that its geometry can be

reconstructed from the samples within some tolerance.

In the case of a manifold given implicitly by a dif-
ferentiable function F : Rn ! R, such a computa-

tion requires �nding several solutions of the equation

F (x) = 0. Physically-based methods for the solution

of nonlinear equations have been known for some time

(Incerti et al., 1979), although it seems that the main in-

terest then was in �nding any one solution, and not the

many solutions that sampling requires. Consequently,

these methods have not been applied to geometric mod-

eling.

The particle systems we use for sampling derive their

dynamics from the potential function jF j. The particles

will seek equilibrium positions on the manifold F�1(0)
because these are positions of minimum potential en-

ergy. If the gradient of F is non-singular, then these
are the only equilibrium positions.

This interpretation of the gradient of jF j as a force

�eld implies the following equation of motion for a unit
mass particle:

d2x

dt2
+ 

dx

dt
+ sign(F )rF = 0; (2)

where  is a positive real number representing friction

proportional to velocity. (Incerti et al., 1979) have pro-

posed a similar di�erential equation for �nding zeros of
functions Rn ! Rn.

3.2 Structuring Samples

The samples obtained by simulating the physics of par-

ticle systems have no structure other than the equilib-
rium position of each particle. Moreover,the samples

are not evenly distributed across the surface, but rather

tend to concentrate around points of high curvature.
While this could be exploited for investigations on the

geometry of the surface, a polygonal approximation in-

terpolating such samples will rarely be quasi-regular.
In order to obtain a quasi-regular approximation, the

sample is subjected to a relaxation process similar to

the one used by (Turk, 1991) and (Szeliski & Tonnesen,
1991): particles repel each other with an intensity that

rapidly decreases as the distance between the particles

increases. Moreover, the movement of each particle is
constrained to stay close to the surface by projecting

repulsion forces onto the tangent plane.

The result of this relaxation process is a more uniform
sampling of the surface. The desired polygonal approx-

imation is then obtained by computing the Delaunay

triangulation associated with the points and choosing
the triangles that approximate well the tangent planes

at each of its vertices.

4 Polygonization using Spring-Mass

Systems

In this section, we describe a method to construct a

polygonal approximation to an implicit manifold using

a spring-mass system.

4.1 Subordinated Triangulation

Initially we de�ne a system of spring-mass elements as-

sociated with a Freudenthal triangulation of the space.
Like the particle systems described in Section 3.1, this

system is subjected to deformation forces derived from

the gradient �eld of the implicit manifold. Its equilib-
rium position gives a triangulation of a region of the

space that contains the manifold M and has the follow-

ing properties:

� M is transversal to the triangulation;
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� The simplices are quasi-regular;

� For each n-simplex � that intersects M there exists

a point p 2M close to the barycenter of � such that

the tangent space of M at p is close to the support
hyperplane of one of the faces of �.

Figure 2 illustrates the properties above in two dimen-

sions. A triangulation with these properties is said to be
subordinated to the surface M (Velho & Gomes, 1991).
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Figure 2: Subordinate triangulation

4.2 Mesh Generation

The spring-mass lattice generation process requires the
following steps:

1. A Freudenthal triangulation is created within a vol-

ume bounding the implicit manifold;

2. Each simplex of the triangulation that intersects
the implicit manifold is identi�ed. Together, they

form an intersecting simplicial complex;

3. A spring-mass system is created by associating
mass nodes and springs to the vertices and edges

of the intersecting complex.

The construction of the Freudenthal triangulation in

step 1 is obtained as explained in Section 1.1. The

identi�cation of the relevant simplices in step 2 is done

through a classi�cation of the simplicial cells by test-

ing the sign of the implicit function at the vertices of

each simplex. Assuming that the uniform grid is su�-

ciently �ne, if the signs are the same for all vertices, the

simplex must be totally inside or totally outside of the

manifold M . If the signs are di�erent, then the simplex

must intersect the surface M .

4.3 Mesh Deformation

After generating the mesh we use a physically-based

approach in order to obtain the �nal triangulation that
will be used for the polygonization of M . The dynamic

simulation submit the spring-mass system to deforma-

tion forces with the purpose of conforming it to the
shape of the implicit manifold. The process takes into

account the internal forces produced by the springs as

well as external deformation forces.

The external forces are based on information de-
rived from the geometry of the implicit manifold. More

speci�cally, two opposite attracting and repulsing force

�elds are generated using the gradient vector �eld of
the implicit manifold. One �eld de�ned inside a small

neighborhood of the object's boundary generates re-

pelling forces that prevent points from being too close
to the surface. The other force �eld, de�ned outside

this neighborhood, generates attraction forces that pulls

points towards the surface.

In order to facilitate the relaxation of the mesh struc-
ture into the desirable con�guration, the initial rest

length of the strings is made smaller than the initial

grid spacing. This means that we start the process with
a tensioned mesh that moves to a rest position under

the action of internal and external forces.

4.4 Polygonization

The polygonization of the implicit manifold M is now

obtained using the same technique of Allgower's algo-
rithm described in Section 1.1: since the triangulation

obtained is subordinated to M , the manifold intersects

each 3-simplex � in at most 4 distinct points, each one
located on a di�erent 1-dimensional face. Therefore,

the linear approximation to M inside � is formed by

one or two triangles (2-simplices). The set of all these
simplices constitute the combinatorial manifold that ap-

proximates M . We shall illustrate the method with

some examples in section 5.1.

5 Results

In this section, we show the result of applying the

two methods described in Sections 3 and 4 to compute

polygonal approximations of implicit surfaces. We also

make a comparative analysis of the polygonizations ob-

tained and discuss the di�erences and similarities be-

tween the two methods.

5.1 Examples

Figures 3 and 4 illustrate the polygonization method us-
ing the particle systems presented in Section 3. Figure

3-a shows the trajectories of a particle system associated

with a two-dimensional curve with 2 connected compo-
nents described by the implicit equation y2�x3+x = 0.

Figure 3-b shows the �nal equilibrium positions of these

particles along the curve. Figure 4-a shows the sample
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points on the surface of the sphere x2 + y2 + z2 = 1.
Figure 4-b shows the polygonal approximation for the

sphere.

Figures 5 to 7 illustrate the polygonization using the
spring-mass system method presented in Section 4. Fig-

ure 5 demonstrates the mesh deformation process for

the cylinder x2 + y2 = 1. Figure 5-a depicts the initial
mesh created from a Freudenthal triangulation of the

ambient space, Figure 5-b shows the �nal mesh in its

equilibrium position. It is apparent that the mesh was
constrained to lie in a tubular neighborhood of the im-

plicit surface, conforming to the cylinder's shape. The

polygonal approximation is obtained from this deformed
mesh.

Figure 6 shows a detail of the polygonization asso-

ciated with the spring-mass mesh before (a) and after

(b) the deformation process. Note how the deforma-
tion of the mesh produces a very homogeneous polygon

structure, transforming long, thin elements to nearly

equilateral ones. This is because the triangulation re-
sulting from the dynamical simulation is subordinate

to the surface; as a consequence, the associated polygo-
nization is quasi-regular.

Figure 7 shows the �nal polygonal approximation for

the cylinder.

5.2 Comparisons

The main di�erence between the two methods presented

in this paper is related to the order in which the op-
erations of sampling and structuring of points on the

implicit surface are performed.

The dynamical particle systems method in Section 3

�rst generates samples of the implicit object and sub-
sequently structures these samples in order to create a

polygonal approximation of the object.

The spring-mass systems method of Section 4 does
the opposite. First the structure is created from a reg-

ular tessellation of space and second, this structure is

used to sample the implicit object.

It is interesting to note that the physically-based ap-
proach is applied only to the sampling process. The

structuring operation involves combinatorial methods.

The two methods produce equally good polygonal ap-
proximations of implicit surfaces. The combinatorial

manifold generated by them is constituted by \almost

fat" triangles.

The dynamical systems employed in both methods

are very stable. The convergence to an equilibrium state

is in general reasonably fast, requiring a small number

of time steps (usually less than 100).

6 Conclusions

We have presented a new approach for the polygoniza-
tion of implicit surfaces based on physically-based meth-

ods. The two methods described exploit di�erent strate-

gies to obtain polygonizations that are quasi-regular

and faithfully approximate the original implicit objects.

The use of a physically-based approach for the poly-
gonization of implicit objects provides great exibility

and control of the resulting structure.

Although this process is computationally more ex-

pensive than traditional methods, due to the numerical

simulation of a dynamical system, it produces qualita-
tively better results.

We are presently incorporating these polygonization

methods in a modeling and animation system for im-

plicit objects.

Our current research also includes the development of

adaptive physically-based polygonization methods and
the application of these methods to numerical grid gen-

eration problems for domains de�ned by implicit sur-

faces.

In relation to the method of Section 3, we are in-
vestigating higher order approximations using intrinsic

Voronoi diagrams. This would enable us to do continu-

ous deformations using spline patches.
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